Large, non-saturating magnetoresistance in single layer chemical vapor deposition graphene with an h-BN capping layer

Chiashain Chuanga, b, C.-T. Liangc,*, Gil-Ho Kimd, R.E. Elmquiste, Y. Yangc, Y.P. Hsiehb, Dinesh K. Patelc, K. Watanabef, T. Taniguchif, N. Aokia, b

Abstract

We report large, non-saturating magnetoresistance (MR) of ~140% in single layer chemical vapor deposition (CVD) graphene with an h-BN capping layer at room temperature at $B = 9$ T. Based on the classical model developed by Parish and Littlewood, our results show that the MR is proportional to the average mobility $\langle \mu \rangle$ and decreases with increasing temperature. In contrast, in a large-area, extremely homogenous single layer epitaxial graphene (EG) device, the MR is saturating and is inversely proportional to $\langle \mu \rangle$, which is consistent with the finite resistance network picture. By comparing the results obtained from CVD graphene with an h-BN capping layer with those from the EG device, we show that the non-saturating linear characteristics come from multi-channel current paths in a two-dimensional plane due to the intrinsic grain boundaries and domains of CVD graphene by capping an h-BN layer that increase the $\langle \mu \rangle$ of CVD graphene. Our results on CVD graphene with an h-BN capping layer pave the way for industrial schemes of graphene-based and air-stable magnetic field sensors with a linear, large response at room temperature.

1. Introduction

Linear magnetoresistance (LMR) is an interesting effect in condensed matter physics because of its possible day-to-day applications in information storages, magnetic sensor readers and magnetic field calibrations [1]. The explanation of the LMR based on theoretical quantum model proposed by Abrikosov is not suitable for the observed magnetoresistance (MR) at room temperature (RT) since no quantum effects are anticipated at RT [2]. Instead, the temperature-dependent LMR in doped silver chalcogenides can be interpreted well by the classical model proposed by Parish and Littlewood (PL) [3–6]. Based on the PL model, the macroscopically disordered and strongly inhomogeneous semiconductor that reveal non-saturating MR at RT can be treated as the coupling among individual inhomogeneous semiconductor regions as random resistor networks [3]. Normally, the MR value in the PL model reveals a quadratic dependence in the low field regime, linear dependence in the intermediate field regime, and saturated behaviour in the high field regime.

$$ MR = \frac{\Delta R}{R} \approx \begin{cases} (\mu B)^2, & \text{when } \mu B < 1; \\ C, & \text{when } \mu B > 1, \end{cases} $$

where $MR = [(R(B) - R(0))/R(0)]$ and $R(0)$ are the resistivity at a magnetic field B and at zero magnetic field [3, 10], and μ is carrier mobility. In the high field regime, $MR \propto \langle \mu \rangle$ for $\Delta \mu / \langle \mu \rangle < 1$ and $MR \propto \Delta \mu$ for $\Delta \mu / \langle \mu \rangle > 1$, where $\langle \mu \rangle$ is the average mobility and $\Delta \mu$ is the disorder width of the mobility in PL model [3]. Such a classical PL model even can efficiently interpret the two-dimensional (2D) systems, like gold nanoparticle arrayed graphene [7] and bilayer mosaic graphene due to the 2D resistor network [8].
Recently, the effect of top and bottom capping of exfoliated few-layer graphene with hexagonal boron nitride (h-BN) has been shown to increase the carrier mobility of the surface layers, but also to increase the MR value by more than 1000% at RT [9]. Such interesting results could generally be related to the classical PL model due to the weak coupling between 2D graphene layer channels. Moreover, the thickness-dependent exfoliated graphene and graphene foam LMR values at RT are also consistent with the classical PL model and multi-channel model due to graphene multilayer and foam couplings with different carrier mobility and carrier density regarded as three dimensional resistor networks [10,11].

In order to find possible magnetic sensing and storage schemes in graphene-based industry scheme, one may use single-layer chemical vapor deposition (CVD) graphene due to its cost-effectiveness, large-area, ultra-thin scale and effective productions [12]. However, the moderate carrier mobility single-layer CVD graphene may not show well-defined LMR at RT [13] due to its intrinsic grain boundaries, merged domains, impurities and defects although these disorders properties on single-layer CVD graphene are good characterizations, which showed nice LMR at the layer-by-layer vertically CVD graphene with conducting Au and Co junction device [14], for classical resistive Ohm boundary process-based but not our knowledge. LMR in single-layer CVD graphene system has not been observed, which is an urgent issue to be improved for the thinnest scale of graphene-based industrial-like applications.

Here we report large LMR up to ~140% in single-layer CVD graphene with an h-BN capping layer (at B = 9 T) at RT. Our results show that the MR is proportional to the average mobility <μ> and decreases with increasing temperature, which support the classical PL model. In a millimeter-scale homogeneous single-layer EG device [15,16], the MR is saturating in the high field regime and is inversely proportional to <μ>, which agrees with the finite resistor network picture [3]. Furthermore, detailed disorder-related LMR in a single layer graphene system was carried out. Consequently, we suggest that the non-saturating linear characteristics come from multi-channel current paths in a 2D plane due to the intrinsic grain boundaries and domains of CVD graphene by capping an h-BN layer that increases the <μ> of CVD graphene. Our results on CVD graphene pave the way for industrial schemes of graphene-based and air-stable magnetic field sensors with a linear, large response at RT.

2. Experimental

We used the scotch tape method to mechanically exfoliate homogenous and high quality h-BN flakes [17] and dry-transferred them driely by Gel-Pak polymer [18] onto a commercial single layer CVD graphene/SiO2/Si substrate [19]. The outward h-BN/CVD graphene region was etched by oxygen plasma, so we can confine the CVD graphene region under the h-BN capping sheet. C6F6 gas was used to etch h-BN capping layer protected by photo-resist for Cr/Au metal depositions as shown in Fig. 1 (a) bottom inset. Firstly, single-layer graphene sample was grown on a chemical-mechanical planarization-polished 4H-SiC (0001) wafer at 1900 °C for 446 s under 98 kPa Ar gas pressure by using a controlled Si sublimation process [15,16,20–22]. Secondly, we directly deposited a metal bilayer (5 nm + 10 nm Au) on single-layer EG so as to avoid pollution from photo-resist residues and produce low-carrier-density EG Ref. [20]. In order to prepare extreme homogeneity of single-layer EG film, we fabricated millimeter-scale EG Hall devices by standard optical lithography processes and removed the protective metal from the Hall bars using diluted aqua regia [20]. Such the extreme homogeneity of single-layer EG film can be characterized by optical microscopy, Raman spectroscopy and atomic force microscopy [15]. (see Supporting Information)

Four-terminal longitudinal ρxx and transverse Rxy were measured by standard ac lock-in methods.

3. Results and discussions

As shown in Fig. 1 (a), the MR values of the CVD graphene with an h-BN capping layer device for T = 50 K–295 K. In the low field regime, MR values showed a quadratic B dependence and a linear property at high field regime near RT range, which were typical characterizations for LMR [3,21]. Based on the PL classical model, the crossover magnetic field BC is in between quadratic and linear dependence regime [3], which can be determined from the dotted line and red solid line trace by taking the first-order derivative of MR with respect to B for T = 295 K as shown in the inset of Fig. 1(a). According to our analysis and results, the BC is smaller than B = 0.9 T at all temperature range. As shown in Fig. 1(b), the slope of the well-defined linear fit in the MR values versus B2 within 0.2–0.7 T2 for T = 120 K–295 K, which can determine the average mobility <μ> due to classical transport behaviors for MR ∝ (μB)2 [10,23]. Furthermore, the corresponding Hall resistivity ρxy(B) show nonlinear behaviors in the high field regime at various temperatures, which suggest carrier conductions from different current channels in a 2D plane as shown in inset of Fig. 1(b) which is similar to the multi-layer graphene systems [9]. Consistently, our results agree with the graphene thickness-dependent magnetotransport behaviors for multi-channel model, but in a single-layer CVD graphene with an h-BN capping layer [9,10].

We are able to calculate <μ> in the range 0.2 T2 < B < 0.7 T2 in our device as shown in Fig. 1 (b). Fig. 2 (a) shows that the <μ> values decreased from ~2800 to ~2670 cm2 V−1s−1 as the temperature is increased from 120 K to 295 K. Also, the MR value decreased with increasing temperature as shown in Fig. 2 (b). Consequently, the MR is nearly proportional to <μ> in our device as shown in Fig. 2 (c), which highly agrees with the classical PL model [3,10]. On the other hand, we also calculated the Hall mobility μH and carrier density nH so as to compare with <μ> when increasing temperature as shown in Fig. 2 (d) and inset. Interestingly, we found that μH and <μ> slightly decreased when increasing temperature, which indicated the weak electron–phonon coupling from SiO2 substrate due to the highly disordered CVD graphene property and excellent heat and carrier transferring h-BN capping layer [24–26].

In order to further confirm our speculations, the LMR at RT in single-layer CVD graphene with an h-BN layer is due to the multi-channel model in a 2D plane when current passed through grain boundaries so as to be divided into many current paths as random resistor networks based on the classical PL model [3]. Therefore, we particularly fabricate extremely homogeneous single-layer graphene film with large-area by epitaxial growth method [15] (see supporting information for the optical microscopy, Raman spectroscopy and atomic force microscopy characterizations). As shown in Fig. 3 (a), the longitudinal resistivity ρxx and Hall resistivity ρxy with B = 9 T at T = 1.5 K. The ρxx approaches zero for B > 2 T and the ρxy laid precisely in wide plateau with filling factor ν = 2, which are typical characterizations for quantum Hall EG device with μH = 7200 cm2 V−1s−1 and nH = 4.2 × 1010 cm−2 for less disordered property and high quality of our large-area single layer EG device [15,20]. As shown in Fig. 3 (b), the ρxx gradually increases up in the high field regime while increasing temperature from T = 1.5 K–300 K and revealed LMR with saturated behavior near high field regime due to the extremely homogenous monolayer EG film regarded as finite resistance network from the classical PL model as our previous studies [3,21].

The saturated MR values at B = 9 T increased while increasing temperature from T = 200–300 K in this large-area homogeneous EG device. Again, MR showed a quadratic B dependence at low field...
regime, that we can determine B_C as shown in the inset of Fig. 4(a) for $T = 300$ K, and saturated at high field regime, which were usual LMR characterizations for our homogenous EG device [3,21]. Hence, we were able to calculate $\langle \mu \rangle$ in the linear field range $0.2 \, T^2 \leq B^2 \leq 0.6 \, T^2$ in our large-area EG device as shown in Fig. 4(b), and the Hall resistivity ρ_{xy} also revealed nonlinear behaviors on high field regimes at various temperatures due to the contributions from finite carrier channel conduction in a 2D plane as shown in inset of Fig. 4(b) [9,10], which is further supportive of our speculations for finite conduction channels in a less disordered 2D plane [3,10]. In comparison to CVD graphene without h-BN capping layer, the MR value could not reveal clear LMR behavior [13] possibly due to finite carrier mobility, which is not similar to our clean large-area EG system. On the other hand, a possible reason for observing the large and non-saturated LMR value in the h-BN capped CVD graphene is that the large enhancement of CVD graphene average mobility for $MR > \langle \mu \rangle$ for $\Delta \mu / < \mu > < 1$ [3] which is due to a capping h-BN layer for a flatter CVD graphene surface so as to highly increase the

Fig. 1. (a) The MR versus magnetic field B from $T = 50$ K–295 K. The top inset is the differential MR with B, and the B_C is marked the end of linear fitting line and solid line. The bottom inset is the schematic diagram of CVD graphene with h-BN capping layer device. (b) The linear increment in MR with B^2 shows the quadratic dependence from 0.2 to 0.7 T2. The figure inset is R_{xy} versus B from 120 K to 295 K. (A colour version of this figure can be viewed online.)

Fig. 2. (a) T dependence of the $\langle \mu \rangle$ inferred from the fitted slope in Fig. 1(b). (b) Temperature dependent MR values at $B = 9$ T from the MR versus B curve in Fig. 1(a). (c) At $B = 9$ T, the MR as function of $\langle \mu \rangle$. The red line represents a linear fit. (d) Comparison of $\langle \mu \rangle$ and ρ_{xy} with T. The figure inset shows ρ_{xy} versus T. (A colour version of this figure can be viewed online.)
In our case the h-BN capped graphene still retains intrinsic disordered properties from grain boundaries as lots of random resistance networks which are related to the mechanism for non-saturated MR value in the high field regime [3].

Fig. 5(a) shows that the \(\langle \mu \rangle \) values decreased from \(~2440\) to \(~2050\ cm\(^2\)\text{V}^{-1}\text{s}^{-1}\) as temperature increased from \(200\) K to \(300\) K and the corresponding saturated MR values at \(B = 9\) T increased while increasing temperature as shown in Fig. 5(b) that is different from the disordered single-layer CVD graphene with an h-BN capping layer. Interestingly, the MR is almost inversely proportional to \(\langle \mu \rangle\) in our large-area EG device as shown in Fig. 5(c), which is similar to thin graphene thickness results regarded as finite conduction channels [3,10]. Also, the related changes in \(\mu_H\), \(n_H\), and \(\langle \mu \rangle\) while increasing temperature as shown in Fig. 5(d) and inset. Obviously, the \(\mu_H\), and \(\langle \mu \rangle\) decreased when increasing temperature, which suggests the strongly electron-phonon coupling from SiC substrate and electron-electron interactions at low temperature [22] in comparison with single-layer disordered CVD graphene with a capping h-BN layer and can be supported from \(\rho_{xy} - T\) curves in these two devices (see Supporting Information). Therefore, our results consistently prove that disordered properties from grain boundaries from single-layer CVD graphene with a capping h-BN layer could lead many current paths regarded as infinite resistance networks [3,10,21].

Finally, we comment on that the LMR effect at RT in a single layer graphene system about the disordered properties degree plays an important role for the numbers of resistance networks degree based on classical PL model. Particularly, such one atomic layer scale with highly efficient CVD production method paved the way for the thinnest scale developments in magnetic storage industries and future nanotechnology markets [1]. Consequently, we find that the non-saturating LMR in CVD graphene can be observed by capping an h-BN layer in order to increasing the mobility and could also be controlled to a certain extent through tuning of the sample disordered properties, like grain boundary sizes and positions [28,29] so as to efficiently increase the LMR value at RT for magnetic storage industrial applications.

4. Conclusions

In conclusion, we have reported LMR measurements of single-layer CVD graphene with an h-BN capping layer and large-area homogenous epitaxial graphene, where we proposed that disordered properties regarded as random resistor network. Large non-saturating nearly \(~140\%\) LMR at \(B = 9\) T was observed in the CVD graphene with an h-BN capping layer at RT. Both of our devices followed with the classical PL model well. Given CVD graphene’s promising application in highly efficient production processes and...
its scalability, our results point to possible magnetic storage industrial integration of graphene-based magnetic sensors with spintronic devices.

Acknowledgments

As an International Research Fellow of the Japan Society for the Promotion of Science (JSPS), C. Chuang acknowledges a JSPS Postdoctoral Fellowship. C.C. would like to thank Prof. J. P. Bird for useful discussions when he visited Chiba University. C. C. is grateful to the MOST and Institute of Atomic and Molecular Sciences, Academia Sinica for a postdoctoral fellowship under the contract number MOST 106-2811-M-001-164. N.A. acknowledges funding from JSPS KAKENHI (Grant No. JP16H00899 on Innovative Areas “Science of Atomic Layers.”

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.carbon.2018.04.067.

References

